

Visão geral

TÓPICOS

- 1 · Materiais necessários
- 2 · Proposta educativa e questionamentos iniciais
- 3 · Tutorial de programação e conexão
- 4 · Desafios

Resumo: Esta aula aborda o uso de um display de OLED para mostrar mensagens programada pelo código Sucuri utilizando uma ESP-32.

CONTROLADOR

ESP-32 DevKit V1

SENSORES E ATUADORES

1 x Display OLED de 0.91"

2 x Matriz de LED

CONECTORES

1 x Cabo para conexão do controlador (Micro USB – USB A)

2 x Mini protoboards

4 x Jumpers fêmeafêmea

8 x Pinheads

ESTRUTURA (OPCIONAL)

Neste primeiro exemplo não haverá estrutura física.

Aula 1: Tela de Mensagens

CONHECENDO MELHOR OS MATERIAIS

MICROCONTROLADOR

O microcontrolador é um pequeno computador, e o cérebro do projeto. Nele definimos instruções, estas que ele segue automaticamente.

COMPUTADOR COM

O computador será necessário para realizar todo o processo de programação do Arduino, além de permitir as funções de IoT

DISPLAY OLED

O display OLED permite que o usuário mostre mensagens ou até mesmo imagens, basta programar pelo código.

2. Proposta educativa e questionamentos iniciais

Para começar a aula

Aula 1: Tela de Mensagens

Esta aula consiste na montagem e programação de uma tela informativa, na qual o usuário pode mostrar mensagens previamente escritas no código. Futuramente poderemos utilizar os conceitos desta aula para aumentar o grau de complexidade e funcionalidade de próximos projetos.

Smartphone com tela de OLED

Telefones mais modernos são equipados com displays de OLED ao invés de LCD, por serem mais eficientes e possuírem uma melhor qualidade de imagem.

Painel de avisos de tráfego

Um telão de avisos de tráfico é um ótimo exemplo comercial de uma tela de avisos, assim como displays OLED, este telão utiliza vários LEDs pequenos que acendem e apagam para formar imagens e textos.

3. Tutorial de Programação e Conexão

Iniciando o programa

Ao abrir o programa será necessário entrar com o email e senha cadastrados no sistema.

Iniciando o programa

Na próxima janela, clique no aplicativo "SUCURI CODING" para iniciar a programação por blocos.

Criando a programação

Já no ambiente de programação por blocos, vamos inicialmente pensar na lógica do programa. Queremos fazer com que o display mostre uma mensagem, aguarde um momento e em seguida mostre outra mensagem. Neste exemplo vamos utilizar a ESP-32, portanto conecte-o ao computador, selecione "ESP-32" para iniciar a programação.

Definindo o ação do atuador

Para definir a ação, vamos escolher o bloco IMPRIMIR. Este bloco permite que usuário mande mensagens de texto pela serial ou por displays conectados ao microcontrolador. Conecte o bloco IMPRIMIR no INÍCIO e clique sobre ele duas vezes.

Definindo a duração da ação

Em parâmetros, escolha OLED e digite o texto desejado entre aspas simples. Ex: 'oi oi'

Definindo a duração da ação

Agora vamos definir o tempo em que o display permanecerá com a mensagem, utilize o bloco AGUARDAR para isso. Arraste o bloco, conecte-o após a saída e clique 2x para definir seus parâmetros.

Definindo o tempo de reação

Em parâmetros, digite 1 para fazer o com que o programa aguarde por 1 segundo antes de passar para o próximo comando. Clique em OK.

Criando a rotina

Repita o procedimento dos dois primeiros blocos porém agora mostrando outra mensagem. Para isso, selecione os 2 blocos anteriores e pressione "Control + C". Arraste os blocos para baixo e conecte-os com os anteriores.

Clique 2x no novo bloco de IMPRIMIR e altere a mensagem.

Conexões físicas

Neste projeto, somente é necessário conectar o display OLED no microcontrolador utilizando mini protoboards para facilitar as conexões.

Conectando o microcontrolador e baixando a programação

Nossa programação está pronta. Conecte o microcontrolador no computador e clique em atualizar portas. Em seguida, compile e execute o código.

Aula 1: Luzes Inteligentes

4. Desafios

Exercícios são importantes para fixação do aprendizado.

Agora que já sabemos como utilizar o display OLED, vamos utilizar a matriz de LED para ampliar as possibilidades de

projetos.

Conexões físicas

Neste projeto, somente é necessário conectar a matriz de LED no microcontrolador utilizando mini protoboards e jumpers para facilitar as conexões.

Desafio 1

Configure os blocos IMPRIMIR do tutorial anterior para "Matriz" e execute-o novamente.

Aula 1: Tela de Mensagens

Solução 1

Parâmetros Bloco Imprimir	?	×
'tchau tchau į		
O OLED		
 Serial 		
 Matriz 		
OK		

Aula 1: Tela de Mensagens

Desafio 2

Mostre uma mensagem no display OLED, aguarde um momento e em seguida mostre outra mensagem na matriz de LED.

Solução 1

Use um bloco IMPRIMIR com ' ' para limpar as mensagens anteriores dos displays

